
For as long as mankind has wondered, the question of life's origins (abiogenesis - literally "lifeless beginning") has remained among those most frequently asked - and answered. Every ancient society produced its own explanation for the phenomenon of life, nearly every one of them involving a god or cabal of gods and/or goddesses. Most of these have been discarded as myths. But whether one believes in gods or rejects them entirely, the question of life's origins remains an important one.
Today, science is the preferred tool for finding answers to questions like this one. Abiogenesis is a rich field of study, and though many solutions have been offered as explanations, only a few have held the interest of scientists. One of these that has recently gained a bit of ground is something called, panspermia.

Then, in 1996, a team of NASA scientists examining meteorite ALH84001 - discovered in 1984 and believed to be of Martian origin - thought that several features appeared to be fossilized bacteria. After an initial wave of excitement, however, a controversy erupted over whether the structures could have been formed by non-biological processes instead. Following five years of rigorous scrutiny and debate, only one line of evidence was left - magnetite crystals arranged in a way suggestive of the presence of bacterium. Ten years after the controversial findings were presented, even this had been all but dismissed.
Still, scientists know that most (if not all) of the compounds necessary for life exist elsewhere in the universe, and efforts to determine if panspermia is viable continue. Dr. Rainer Glaser, Professor of Chemistry at the University of Missouri-Columbia, recently completed a research paper titled, "Adenine Synthesis in Interstellar Space: Mechanisms of Prebiotic Pyrimidine-Ring Formation of Monocyclic HCN-Pentamers," that suggests that one of the precursor elements necessary for life, adenine, exists in interstellar dust clouds which, in turn, may have delivered the molecules to Earth.
"The idea that certain molecules came from space is not outrageous," Glaser says. "You can find large molecules in meteorites, including adenine. We know that adenine can be made elsewhere in the solar system, so why should one consider it impossible to make the building blocks somewhere in interstellar dust?"
Adenine is a nucleotide base considered one of the most important organic molecules, since it bonds with other molecules to give DNA its signature double-helix structure and is one of the four bases of both RNA and DNA. In a variation of the famous Miller-Urey experiment, Juan Oro found that, in a reduced atmosphere, hydrogen cyanide (HCN) could produce not only amino acids, but also a large amount of adenine. Thus, Dr. Glaser intended to study the mechanisms for synthesizing adenine in interstellar dust clouds, which have been shown to contain high amounts of HCN. Dr. Glaser's research, which was published in the peer-reviewed journal Astrobiology, describes the fusion of adenine and other essential chemicals. He also suggests that astronomers take a closer look at those dust clouds with the intent of "narrowing the spectrum of where life could exist" in our galaxy.
"There is a lot of sky with a few areas that have dust clouds. In those dust clouds, a few of them have HCN. A few of those have enough HCN to support the synthesis of the molecules of life. Now, we have to look for the HCN concentrations, and that's where you want to look for adenine," he said. "Chemistry in space and 'normal chemistry' can be very different because the concentrations and energy-exchange processes are different. These features make the study of chemistry in space very exciting and academically challenging; one really must think without prejudice."
Whether this new research stands up to further scrutiny remains to be seen.

Adapted from: http://rcp.missouri.edu/articles/glaser-origins.html
All images courtesy NASA/JPL-Caltech